On the Behavior of the Total Variation in CWENO Methods for Conservation Laws
نویسنده
چکیده
We consider a family of high-order, weighted essentially non-oscillatory central schemes (CWENO) for approximating solutions of one-dimensional hyperbolic systems of conservation laws. We are interested in the behavior of the total variation (TV) of the approximate solution obtained with these methods. Our numerical results suggest that even though CWENO methods are not total variation diminishing (TVD), they do have bounded total variation (TVB). Moreover, the TV of the approximate solution seems to never increase above the theoretical value, and it approaches it as the mesh is reened. These results are hopefully a rst step in the quest for proving the convergence of such high-order methods.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملPii: S0168-9274(99)00107-5
We consider a family of high-order, weighted essentially non-oscillatory central schemes (CWENO) for approximating solutions of one-dimensional hyperbolic systems of conservation laws. We are interested in the behavior of the total variation (TV) of the approximate solution obtained with these methods. Our numerical results suggest that even though CWENO methods are not total variation diminish...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کامل